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Abstract—The general axisymmetric double contact problem for an elastic layer pressed
against a half space by an elastic stamp is considered. The problem is solved under the
assumptions that the three materials have different elastic properties, the contact along the
interfaces is frictionless and only compressive normal tractions can be transmitted across the
interfaces, and, in the case of the elastic stamp, the local radius of curvature of the stamp
is large compared to the stamp-layer contact radius. The problem is reduced to a system
of singular integral equations in which the contact pressures are the unknown functions.
The solution is obtained and extensive numerical results are given for three stamp geometries,
namely, rigid and elastic spherical stamps, and a flat-ended rigid cylindrical stamp. The results
show that in the case of a flat-ended rigid cylindrical stamp the radius b of the contact area
between the layer and the subspace is independent of the magnitude P of the total transmitted
load and in all other cases b will depend on P.

1. INTRODUCTION

Because of its application to a great variety of important structures of practical interest
(such as foundations, pavements in roads and runways, rolling mills, ball and roller bearings,
and other structures consisting of layered media), in the past the contact problem in solid
mechanics involving an elastic layer and/or an elastic half space has been very widely
studied. The general description of the problem may be found, for example, in{1-4]. Some
of the typical solutions given in recent years may be found in[4-9] where it is assumed that
the contact between the elastic layer and the subspace is either one of perfect adhesion or
frictionless with the additional (rather unrealistic) condition that across the interface the
normal component of the displacement vectors is continuous. The problem of a frictionless
elastic layer on an elastic foundation where it was assumed that the contact stresses can only
be compressive was discussed in{10-13]. In{11] the plane and the axisymmetric problems
are solved with a concentrated load or a uniform pressure applied to a certain portion of
the layer surface. The solution of the plane contact problem in which the load is applied
to the layer through a rigid stamp with a cylindrical or rectangular profile is given in[12].
The similar problem in which the elastic layer is approximated by a thin plate with a certain
bending stiffness and is subjected to normal loads on its free surface was discussed in[14-17].

The results of the studies on this so-called * receding contact problem’’ which has been
considered in[10-17] indicate that the contact area between the layer and the subspace
depends only on the relative distribution of the applied load and is independent of the load
amplitude. However, in[12] it was shown that this may not be the case if the load is applied
to the layer through a stamp. In this double contact problem there are two unknown
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functions, namely, the pressures between the stamp and the layer p, and the iayer and the
subspace p, . If the load is applied to the layer directly or, more generally, through a reci-
angular stamp (the flat end of which remains parallel to the layer surface while the load is
applied), actually the unknown functions are p,/P, (i = 1, 2) where the constant £ is a
measure of the load amplitude (say, the resultant force). Hence, P appears in the results as
a multiplicative constant in the contact pressures only. On the other hand. if the rectangular
stamp has any other profile (with a nonvanishing first derivative), as shown in{12] the layer
subspace contact area will depend on the load amplitude P.
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Fig. 1. The Stamp-layer-half space geometry.

In this paper we will consider the general axisymmetric double contact problem for three
different elastic materials, namely, a semi-infinite subspace, a layer of finite thickness, and
a stamp (Fig. 1). Detailed results will also be given for a rigid stamp with a spherical or a
flat-ended cylindrical surface. The elastic (soft) stamp solution may find its application, for
example, in load transmission problems in pavements. The problem of a spherical stamp
on a frictionless elastic layer has also been studied experimentally by using the photoelastic
stress freezing technique, and the results were given in a recent paper[18].

2. DERIVATION OF THE INTEGRAL EQUATIONS

Consider the axisymmetric double contact problem for three different elastic materials
shown in Fig. 1. Let y;, v;, (i = 1, 2, 3) be the elastic constants of the layer /, the half space 2,
and the stamp 3. The problem will be solved under the assumptions that, (a) the contact
along the interfaces is frictionless and only compressive normal tractions can be transmitted
across the contact surfaces, and (b) the local radius of curvature R of the elastic stamp is
sufficiently large compared to the radius a of the stamp-layer contact area so that in express-
ing the surface displacement of the stamp in the contact area in terms of the contact pressure
D1 the medium 3 may be approximated by an elastic half space. The assumption (a) appears
to be realistic. If we are not interested in the global stress distribution in the stamp and if
the external loads are applied to the stamp at a location sufficiently far from the contact
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region, the error introduced through the assumption (b) would not be expected to be very
significant[1, 3]. The governing equations of the problem then are (see Fig. 1)

P Q%u;  10u; ui+ 62wi) (-6_2&__ 62wi) _o
(4 + “’)( I aroz) T\ T arez) T
*u; 1du; J*w; du, ow, o%u; 62w~) ]
—— —— —-t :0, =1>2’3;
(4 + 2“')(5 PR 622) (az ar) H (or 5 or U )
(1a,b)
du, u; {:?w,.
0y = (A + 2u) +i( az),
u; ou;  Ow,
aiez('li'{"zﬂi)?'{'i( 82)
ow, du; u,
= (A 32 (25 B,
T
0
th = (6“ +2, G=12.9; (2a-d)
0z
subject to the following boundary conditions:
Tlrz = Oa T3tz = 05 Ulz = aSza (Z = 05 r 2 0) (33—0)
le:()a (z=0,r>a),
wy—w, =f(r), (=0,0<r<a), (4a.b)
Ty =0, Ta,, =0, Gy, = 0ag, (z=-hr=0) (5a—¢)
o-lz:()a (z=——h,r>b),
W, — w, =0, (z=-h0<r<b). (6a,b)

where f(r) is a known function obtained from the equation giving the profile of the stamp,
# is the thickness of the layer, a is the radius of the contact area between the stamp and the
layer, and & is the radius of that between the layer and the subspace. b and, in the case of a
stamp with rounded corners, a are unknown constants.

Using, for example, Hankel transforms the solution of (1) and the relevant stress com-
ponents may be expressed as

u(r, z) = fo [(A, + zAp)e ™ + (A5 + 24 )N (or)or dar,

wi(r, 2} = f: {[Al + (% + z)Az] e + {—A3 + (% — z)A4}e"”}Jo(ar)a da; (7a,b)

uy(r, z) = f (As + zAg)e*J {(ar)a da,
0

o]

wy(r, z) = f

0

[—As + (Ef - Z)As] e Jo(ar)e da; (8a,b)
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us(r, z) =f (A7 + zAg)e” **Jy(ar)x da,
[4]

- . o
wilr, 2) =f [A7 + (;3 + z)ASJe‘”JO(ocr)oz do; (9a, b)
4]
1 -7 ~
Zu—l 0, = JO {— (A + z4,5) + 2(1 — v)A,Je™*

+ [—a(As + zA4) + 2(1 — v )A,Je* 1 o(or)a da,

l B . —~az
Elzrlrz =J0 {“[O((Al +A22) + (1 — 2V1)A2]C
+ (A3 + z44) — (1 = 2v)A,)e*" 1 (ar)a da; (10a,b)

1 oC
5= 02 = f [—a(As + z4g) + 2(1 — vy)A ]I o(ar)a da,
Ha 0

1 ® ;
— 1, =f [ + z4g) — (1 — 2v,) Agle™J (ar)a dac; (11a,b)
2u, 0
1 ® _
— 0, = f [—a(A; + zAg) — 2(1 — v3)Agle”™ *Jolor ) da,
2p, 0
1 [v9]
— 1, =f [—a(Ady + zAg) — (1 — 2v3)Agle™*J, (ar)e da; (12a,b)
2u; 0
where k; =3 —dv;, (i=1, 2, 3). 4,, ..., Ag are (unknown) functions of the integration

variable «, and are obtained from the boundary conditions (3-6). Equations {3) and (5)
give six homogeneous algebraic equations in 4, and may be used to eliminate six of the
unknowns. The remaining two functions may be obtained from the system of dual integral
equations resulting from the mixed conditions (4) and (6). A more direct approach to obtain
the integral equations of the problem would be the following: First define

p(r) = —a,.(r,0),  py(r)= —0o,(r, —h). (13a,b)

From (4a) and (6a) it follows that
py(r) =0, (r>a; po(r) =0, (r>b), (14a,b)
and on the contact areas the pressures p; and p, are unknown. By replacing (4) and (6) by

(13) and (14), the unknown functions A4,, ..., 43 may be expressed in terms of p, and p, as

a b
Ayo) = m; (o) fopl(p)lo(fxp)p dp + miy(%) fopz(p)Jo(ap)p dp, (i=1....8), (15

where the known functions m;;(a), (i =1, ..., 8, j = 1, 2) are given in the Appendix. The
solution (7-12) with A; as given by (15) satisfies all of the boundary conditions stated by
(3-6) except the mixed conditions (4b) and (6b), which, by using (7b), (8b), (9b) and (15),
give the following pair of integral equations in the unknown functions p, and p,:
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(1 +7v3) j: pip)p dp f:J olor) o{xp) da

© 292h* + 2ah + 1 — e
- J d
2, [ 2o dp || iy e g Jo(ar o) da

a © (1 —ah)e”™™ — (1 + ah)e™
~ 2, [ PioIp dp J, e ez Jolanfap) d

=f(n, ©O<r<a),

b @©
92 [ oI dp [ Jo(ar)olop) d

b © d02h* + 2ah + 1 —e” 2™
=2 [ P00 o [ s @ o(ap) da

s © (1 —ah)e™™ — (1 + ah)e™
-2n fopx(P)P dp o Ao+ 2 _ gl _ gl Jolar)J o(ap) da

=0,(0<r<«b), (16a,b)
where
v=0-v)u, G=1223). (17)
Noting that

~2-K(’3) . (0<p<r),
ny r

2. en

(where K is the complete elliptic integral of the first kind) and differentiating (16) with respect
to r we obtain

j " I o) ofap) dox = (18)
o

1 2 i H a ®
;foh(r, P)(p o7 r)m(p) dp +2y fopx(p)p dp fn Fy(r, p, o) da

’ ® 1 df(r)
+2 d Fy(r, p, ) dot = ——me s
?fopz(p)p pfo e T

O<r<a),

10 1 1 b ©
[ W (5= ) raor o+ 28 [ paodo dp [ Fr ) 0

+2p f pi(p)p dp f Fy(r,p,0)da=0, (0<r<b), (19a,b)
0 0
where

EE(?) , (p<m),

W =1 20)

2 2 2

p r pt—r r

— E(-} - K{- s »
2 (p) p) (p) (p>r)
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1 - 1 —v,

S Hy V1 Uy
'}’~— = N = == R
Y1+ 7s 1“’1_’_1—\’3 Y1+ 72 I—v1+l—v2
Hy Hs Hy i

2n

F 2020 + 20k + 1 — ¢ 2%
1, py2) =a Q0h? £ 2 — o 2%k |2 )Jl(ar).lo(ap),

(1 —am)e ™™ — (1 + ah)e .
FZ(r> P a) = a(4d2}12 +2— e——Za:h . eZah)Jl(ar)JO(ap)‘ (zzaab)

Using the symmetry considerations, if we extend the definition of p, and p, into (~g, 0}
and (—b, 0), respectively, in such a way that

pl(r)::pl(“r)’ Pz(") :p2("r): (23)
(19) may also be expressed as

1% pyp) 1e? a »
=, ,71:7‘39 + ;;f_a k(r, ppi(p)dp + 7 fuapl(p)iﬁf dp fo Fi(r, p, a) da
’ ” 1L df(r)
+ d F Py dy = —our s — ,
¥ f_bpz(,o)}pi p fo o, p, oy da S dr (~a<r<a)

1t 1 . .
7 _,Jf-z;(’%dp +— L,k(r’ pIp2(p) dp + 5f~bP2(P)IPf dp fo Fy(r, p, %) da
+ B fi pi(p)|pl dp J':Fz(r, p,a)doe =0, (=b<r<b), (24a,b)
where (noting that A(r,r) = 1)
K, p) = 0PI = 1
p—r
2e(l2).  aor <1,
hy(r, p) = N s ,
r —_ r
%E(E)-p r K(i;), (ol >1rD. (25a,b)

The dominant part of the integral equations (24) has a simple Cauchy type singularity.
However, in order to avoid some convergence difficulties encountered in the numerical
analysis, it is worthwhile to examine the Fredholm type kernels in the integral equations
somewhat more closely. In (253), observing that

. d
lim k(r, p) = [217; hy(r, p)} ,
[2add

por

using (25b), it can be shown that for small values of |p — r| we have

k(r, p) =§1; logip — r} +0(D). (26)
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Also, from (22) it is seen that, as a — 0, F, and F, behave as «™*. Hence, considered sepa-
rately, the Fredholm kernels in (24) involving the integrals of F, and F, are not bounded.
On the other hand, writing

w0

f Fyr, p, 0) do = f Fir, p, 0)da + f Fr, p,a)da, 27
0 Y I3

assuming ¢ to be very small, and hence replacing F; by its asymptotic expansion around
o = 0, for example (19b) may be expressed as

1 1 1
L e

+8 [ oo dp [ Firsp.0 a4 8 [ pi(odo do [ Fatr, )

Jeuto) o

3 ar 3rpoz 3

+ﬁfpz(p)pdpf[ VO b 8h3+0((x2)] dat

ar 3rp*x  ra 2
8 o0 an [ |5+ 37 -3 50 - £+ 00 aa
=0, (0O<r<b). (28)
If we now consider the equilibrium of the layer, i.e.
a b
f Jilo)p dp = f Jpp dp, (29)
(28) becomes

e -

+ B j:Pz(P)P dPU (; xs +0(052)) dd+f Fy(r,p, o) doc]

n r)Pz(P) dp

+ B f:P:(P)P dﬁ“:( g Zsa + 0(052)) da + f Fy(r, p, o) dfx}

= (), O<r<b). (30)

It is now clear that the Fredholm kernels appearing in (30) are bounded. The integral
equations (24) may then be expressed as

1 “ pilp) o
T, p—r

=1 ke op 90 + 3] ks o) 80

g : d
+1 [l o) do =T/, (a<r<a),

: ’ Pz(ﬂ)
R yp—r

dp +— j K, x(0) dp + B | kaa(r, p)p(0) 0

+8 f_bkzz(ra PIpa(p)dp =0, (~b<r<b), (31a,b)
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where k(r, p) is given by (25a) and

kustro ) = 1ol | [ (3% 3“+0(a2>) dut [ Fir o) da.

& / 3 -
st )= o1 (= 3727 + ) e + [ Fatr, .2y .

kaa(r, p) = k1y(r, p), kyi(r, p) = kys(r, p). (32a-d)

If the stamp has rounded corners, in the system of singular integral equations (31), in
addition to the contact pressures p,(r) and p,(r), the radii of the contact areas a and b are
also unknown. These two unknown constants @ and b are determined from the equilibrium
conditions which may be expressed as

an py(ryrdr=P,
0

b
2 [ pay(r)r dr = P, (33a,b)
4]

where P is the known (compressive) resultant force applied to the stamp away from the
contact region (z =0, 0 < r < a). Without going into any of the details of the solution of
the integral equations, from (31) and (33) it is clear that, if f'(r) = 0 (i.e. if the stampis a
rigid flat-ended cylinder), then (31) is homogeneous and (31) and (33) can be solved for
pAr)/P, (i =1, 2) and b uniquely, meaning that the radius of the contact area b is independent
of the load amplitude P. On the other hand, if /'(r) 0, & and « (if it is unknown) will depend
on the actual magnitude of the load P.

3. ON THE SOLUTION OF THE INTEGRAL EQUATIONS
To solve the system of singular integral equations (31) we first normalize the intervals
(—a, a) and (~ b, b) to be (—1, 1) by defining,
r = ax, p = at, (—a<(r, p)<a),
r = bx, p =bt, {(—=b<{r,p)<b),
pi(p) = py(at) = g,(1), (~1<t<1),
P2(p) ==pz(bt) =g,(1), (=l<i<l),

1
- : - . 4
——y drf(r) F(x), (=l<x<1) (34)

Thus, (31) and (33) become

1 1 1
-1— f —gl—(i) dr + ¢ f k(ax, at)g(t) dt + ay f kyi(ax, at)g, (1) dt
nd-1t—Xx -1 -1

+ by J._llku(ax, bt)g,(t) dt = F(x), (x] <1,

1 J“ ﬁﬁ‘_)dH% [ " k(bx, bt)go(0) dt + aB fj k,,(bx, af)g (1) dt

n 11— X

+ b fj Faalbx, bz de =0, (x| <D (35a.b)
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1
2na? J. g(x)x dx = P,
0

1
2mh? j ga(x)x dx = P. (36a,b)
4]

(35) is an ordinary system of singular integral equations. Hence, referring to[19], the solution
is of the following form

g:() =1 - tz);l/zGl(t),
g,(t) = (1 — 2)F12G,(p), (37a,b)

where G, and G, are bounded in (—1 < t < 1). Since the contact between the layer and the
subspace is always *‘smooth”’, g,(F1) must be bounded (and necessarily zero). Therefore,

92(1) = (1 = )G, (1), (38)

and the index of (35b) is always — 1. Similarly if body 3, the stamp, has rounded corners,
contact between the stamp and the layer will also be smooth, and in (37a) +1/2 will be the
correct exponent. On the other hand if the stamp is a rigid cylinder with a circular sharp
edge along r = q, then the pressure p; will have an integrable singularity at r = a, and in
(37a) —1/2 will be the correct exponent. In either case, in the limiting case of 4 — oo the
functions Fi(r, p, a), (i =1, 2) (see (22)), and consequently the kernels k;; will vanish and
the integral equations will be uncoupled. The first becomes the integral equation for a stamp
(body 3) on a half space (body 1). Since the second equation is homogeneous with an index
of —1, as i — oo its solution p, will tend to zero. Even though the technique described in
[20] may be used to solve the system of integral equations (35) in a straight-forward manner,
for various stamp geometries there are certain differences in the approach which are
summarized below:

(a) Elastic or rigid stamp with a rounded profile

In this case both a and b are unknown. As in all stamp problems of this type, since the
problem is highly nonlinear in q it is solved in an inverse manner, i.e. by assuming that the
contact radius a rather than the resultant force P is prescribed. For each given a, P is then
calculated from (36a). Similarly, since the problem is also highly nonlinear in b, it can only
be determined by some kind of interpolation. From (36) defining

H(b) = a? f:gl(x)x dx — b2 f 1g2(x)x dx (39)
0

it is seen that for the correct value of b the function H(b) is zero. Hence for a given radius a
and for b = by, b,, ..., solvingt (35) for g, and g, , and evaluating H(b,), i =1, 2, ...) from
(39), an interpolation scheme may be established to determine b.
(b) Flat-ended rigid cylindrical stamp

In this case a is known and we have

F(x)=0,  g,() =(1-)712G,(r). (40a,b)

‘+ Note that in this case, the index of both equations in (35) is —1, therefore g1, g2 may be calculated uniquely
once a and b are specified.
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If (35) and (36) are divided by P, it is seen that the unknown functions of the problem are
$1(x) = g,(x)/P, $2(x) = g,(x)/P. {4la,b)

The index of (35a) is 1 and that of (35b) is — 1. Hence the solution will contain one arbitrary
constant which is determined from

1
2na [ gy dx = 1. (42)
0

For this problem, the interpolation scheme to determine  may be established by considering
the function

1
M) = 27b? f ¢, (x)x dx — 1, (43)
1)

M(b) = 0 corresponding to the correct value of b, which clearly is independent of P.

(¢) Rigid cylindrical stamp with a sharp edge and an arbitrary end profile

In this problem, a and F(x) are known, (40b) is still valid, the index of (35a) is 1, (36a) is
used to determine the related arbitrary constant, and the interpolation scheme to determine
the unknown constant b may be set up by considering the function

1
N(b) = P — 2rb? j g2(x)x dx
4]

1 1
= 2na® f g,(x)x dx — 2nb? f g2(x)x dx. (44)
(4] (4]

Unlike the flat-ended cylinder, for this stamp geometry the radius b of the contact area
between the layer and the subspace is dependent on the load magnitude P.

4. EXAMPLES

As examples two basic stamp geometries will be considered. The first is a spherical stamp
(or a paraboloid of rotation) with a radius of curvature R for which we have (see (4b),
(19a), (34), and (35a))

7
—— e ————— X,
R{y; +7v3)

where a is the radius of the stamp-layer contact area. The second is a flat-ended rigid cylin-
drical stamp of radius & for which

____1_ 22 . 3
fO) =55 @ =) Fx)= (45a,b)

F(x) =0. (46)

In the numerical analysis the layer thickness # will be used as the length unit.

The results for the flat-ended stamp obtained from (35) and (41)-(43) with M(b) = 0 are
given in Figs. 2-7. Figure 2 shows the layer-to-subspace contact radius b as a function of
the bimaterial constant § defined by (21) for various values of a. For a/h = 0-01 the result
given in Fig. 2 is indistinguishable from that given in[11] for a concentrated force acting at
r =0, z = 0. An interesting feature of the flat stamp problem shown in Fig. 2 is that, if a/k
is sufficiently large, for small values of B (i.e. for large values of u,/u,) a separation of the
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Fig. 2. Layer-half space contact radius b for loading by a flat-ended rigid stamp of diameter 2a.
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layer-half space material combinations .
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Fig. 4. Contact pressure between the flat stamp and the layer for a/h = 2-0.
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Fig. 5. Contact pressure between the layer and the half space for a/h = 1.0 and for loading
by a flat stamp.
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contacting surfaces of the stamp and the layer may take place around r = 0, that is the
pressure p,(r) may become negative. This trend may also be seen from Figs. 3 and 4 where
the distribution of the normalized contact pressure p,(r) is shown for various values of f.
If B is further decreased, around r =0 p,(r) becomes zero and changes sign. The solution
given here, of course, would not be valid for this case. This separation problem is one of
receding contact on both sides of the layer and can be formulated and solved by using a
technique similar to that described in this paper. The value of § at the initiation of separation
is shown by dashed lines in Fig. 2. Figures 5 and 6 show the contact pressure between the
layer and the subspace. For a/h — 0, the pressure under the stamp approaches that for a
rigid stamp on an elastic half space[3] given by

P i
pir) ~2—n“;1?/—;—»;~:?~ 47)

In the present problem p, is given by (34) and (40), i.e.
pi(r) = Gy(r/a){(1 — r?[a®)'"2. (48)

Thus the contact pressure has an integrable singularity at r = g and the strength of the
singularity or the stress intensity factor may be expressed as
K =1lim \/2?61 :—I:)pl(r). (49)
r—a
Figure 7 shows the ratio of the stress intensity factor K, for the layer problem to that for
the half space given by

Ky = P|(2na*?). (50)

The figure shows that for small values of § (~f < 0'6), K;/Kgz > 1. The same trend is also
observed in crack problems of two elastic half spaces bonded through an elastic layer con-
taining a crack. In all such problems, generally if the stiffness of the half spaces is smaller
than that of the layer, the stress intensity is greater than that corresponding to a homoge-
neous infinite space containing a penny-shaped crack([21]. It shoud be noted that if the
interface condition between the layer and the half space were to be perfect adhesion, then
for 8 = 0-5 the problem would be that of a rigid stamp on a half space for which K; /Ky = 1.
On the other hand Fig. 7 shows that for § = 0-5 K; /Ky > 1. Thus the removal of the tan-
gential constraint on the interface corresponds to a reduction in the modulus of the half
space for the perfect adhesion case.

In solving the spherical stamp problem we observe that the additional length parameter R,
the radius of the sphere, enters into the analysis only through F(x), the right hand side of
(35a), (see (45b)). Thus defining

a

— Ry PO =pOIP 0@k =9,

Po
1

P*=Pl(poa®) =2n| g*(xxdx,  H*®)=H(b)po,
0

P2(r)[po = g2(X)[Po = ny*(x), (51
it is seen that for given a, 4, B and y, (35) can be solved for g, *(x), n7,*(x), b (with H*(b) = 0),
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and P*. Then for a given R, p,, p,, p, and P can be evaluated from (51). The results for a
rigid spherical stamp (y; = 0) are given in Figs. 8-13. In order to compare the layer-subspace

pressures obtained from two different stamp geometries, for p, the same normalization
pressure (P[#*) is used in both examples. Note that the quantity p,*(r) given in the figures

10-0~

Fig. 8. Layer-half space contact radius b for loading by a rigid spherical stamp.

2:0~

(RU-v1)/ap ],

*
t

rrsa

Fig. 9. Contact pressure between the rigid spherical stamp and the layer for a/h = 0-5.
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Bx01

a/h«=i-0

ria

Fig. 10. Contact pressure between the rigid spherical stamp and the layer for a/h=1-0.

‘ Rigid

np, 1P

P} -

r/é

Fig. 11. Contact pressure between the layer and the half space for a/k=0-5 and for loading
by a rigid sphere.
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1 :
02 o4 06 o8 -0

r/d

Fig. 12. Contact pressure between the layer and the half space for a/h=1-0 and for loading
by a rigid sphere.

Rigid

a0l

P f(1-v1) R /p @] P

arsh

Fig. 13. Total transmitted force P vs the stamp-layer contact radius a for various layer-half
space material combinations 8 and for loading by a rigid spherical stamp.
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may be obtained from

py(r) _ my*(rja)

PR " P 52)

p¥(r) =
For a/h = 0-01, b and the contact pressure p,(r) obtained from the spherical and the flat-
ended stamp problems are nearly identical and are the same as that obtained in[11].
Figure 13 shows the results for P* which is used (in an inverse way) to determine the applied
load P for given a, h, R and f representing the properties of the materials. In the limiting
case as a/h — 0 the results regarding the stamp-layer contact pressure (see (47)) reduce to
the half space solution for which[1]

8 a 8 , ,
= = —a'p,. (53
3(yr+y)R 3 o )

Comparing (51) and (53) it is seen that for a/h — 0 P* — 8/3 which is seen to be the value
to which P* vs a/h curves converge for all values of § in Fig. 13.

Figures 14-17 show the results for an elastic spherical stamp. For a/# = 0-01 the results
are indistinguishable from rigid stamp results. For larger values of a/h, however, the
difference may be considerable. For example, as seen from Fig. 17, for a fixed value of a/A
the total transmitted force P appears to be nearly independent of § for low values (up to 0-3)
of y (i.e. for a stamp with relatively low stiffness), whereas for a rigid stamp P varies over a
relatively wide range as f varies between O and 1.

In conclusion it could be stated that the technique used in this paper for formulating the
problem in terms of a system of singular integral equations can be used without major
modification to solve similar contact problems for multilayered materials, for more complex
contact geometries, and for problems in which body forces (such as gravity) may no longer
be negligible.

P

10:0—

Elastic

Fig. 14. Layer-half space contact radius b for loading by an elastic stamp.
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Fig. 15. Contact pressure between the spherical elastic stamp and the layer for a/h=1-0 and

y=0-3.
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Fig. 16. Contact pressure between the spherical elastic stamp and the layer for a/h = 1-0 and
y=01.
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50
4-0 —
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Fig. 17. Total transmitted force P vs the layer-subspace material constant j for various values
of stamp-layer material constant y, and for a/h=1-0 in loading through an elastic sphere.
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APPENDIX
The functions m;; (2) (see equation 15):
(, — (e "2 =2ah — 1) + 4a’h,

my, () = A o(daPh? — e 2 _ g2 )
o) = (ky — DE™ — e™™) + 2ah(k,e~ " — &™)
BT dpa(daPh? —e 2 — e 4 2)
2ah —e 2™ + 1
my (@) =

2/!1(4“2}12 _ e—Zrzh _ eZuh + 2)’
Qa4+ e2% — 1)e ™
my, (o) = — 20, (4Ph? — e 2 _ g2 2)

(@) = [—(x D+ (k, — (4a?h? — e~ 2% 4 2ah + 1) + 4a’h?
31 - 4p o 1 4aZh? — e~ 2% _ g2k 4 5
(@) = (1, — (e~ — &™) — 20h(x,e™ — e'“")’

dp,a(40*h? —e 2 — g2 1+ 2)

42h* 4+ 2ah — e 4+ 1
myy(a) = 2_111 -1+ A2h? — e 2% _g2ah o’
(€™ 2% — 2uh — 1)e

m42(<x) = 2[11(4(12}12 _ e—Zah _ eZah + 2) ’
I+ ah — 2v,)e™

ms(a) =0, msy(a) = — g_T—L

Ha

eah

mg () = 0, Mg(a) = — Y
H2

1—2v
mq (o) = — -Tots . my () = 0,
3
== )=0
m ) =—, m = u.
81 25 82(a

AOcTpakT—PaccmaTpuBaercs obwas nipoGiaeMa OCECUMMETPHYHOrO HBOMHOTO KOHTAaKTa
3MAaCTUYHOIO CJIOs TNPHXATOTO K MOMYNPOCTPAHCTBY 3JIACTHYHBLIM DNecTHkoM. IlpoGnema
PELLAETCA MPENIOIOKEHAEM, YTO TPH MaTepHasia KMEIOT Pa3IHYHbIE IJIACTHYHBIE CBOWCTBA,
YTO KOHTAKT 10 HOBEPXHOCTH Pa3/iesia JIMIIEH TPEHHS |, YTO 10 TIOBEPXHOCTH pa3jiesia MOryT
rmepenaBaTbCs TONBKO HOPMAaNbHbIE CHABIMBAIOLUINE TACOBHE YCHIMA. MeECTHBIN pamuyc
KpHBW3HBI [leCTHKA IO CPAaBHCHHIO C PaJHycOM KOHTAKTa MECTHKa-Clos Gosee GoNbLION.
IIpo6neMa NPHBONMTCA K CHCTEME CHHIYIAPHBIX HHTETpaibHbIX YPABHEHH B KOTODBIX
ZIaBJIEHME KOHTAKTA SIBISETCA HEM3BECTHON byHKuMeH. JJOCTUIIE pEeUICHHsA U AAIOTCHA YUC/ICH-
HBIC PE3yIIbTATH TPEX TEOMETPHYECKHX COOOPaKeHNH ISk IECTHKA, 4 UMEHHO, JUIsl ECTKUX H
3NACTAYHBIX CePHYECKHX MECTHKOB M IUISA XKECTKOTO LIIHHAPUYECKOTO MECTHKA C INIOCKHMH
xoHuamu. Ilo pesynbraraM BHOHO, 4TO B ClIy4ae XKECTKOrO LMAMHAPHYECKOTO TECTHKA C
NJIOCKMMH KOHIIAMH Pajdyc b — IUIom@aab KOHTAKTa MEXOY CIOEM H BEIIECTBOM 3aBHCHT OT
BenmuuMHbl P — ofuielt nepenaHHON Harpy3x, U BO BCEX APYIHMX CiIydasX b GymeT 3aBHCeTh

ot P.



